
!ADD-TR-60-869 0ATI LE FILS COPY
Part II

EFFECT OF STATE OF STRESS ON THE FAILURE OF METALS

tAT VARIOUS TEMPERATRES

TECHNICAL DOCUMENTARY REPORT NO. WADD 60-869, Part II

Jun. 1962

Directorate of Materials and Processes

Aeronautical Systems Division

Air Force Systems Command

Wright-Patterson Air Force Base, Ohio

Project No. 7353, Task No. 735301

(Prepared under Contract No. AF 33(616)-6o41 by The

University of Michig,..n, Ann Arbor, Michigan; R. M.

Haythornthwaite and D. R. Jenkins, authors,)



K NOTICES

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely related Government procure-
ment operation, the United States Government thereby incurs no responsibility
nor any obligation whatsoever; and the fact that the Government may have
formulated, furnished, or in any way suppliedthe said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as in any
manner licensing the holder or any other person or corporation, or conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

Qualified requesters may obtain copies of this report from the Armed
Services Technical Information Agency, (ASTIA), Arlington Hall Station,
Arlington 12, Virginia.

This report has been released to the Office of Technical Services, U.S.
Department of Commerce, Washington 25, D.C., in stock quantities for sale
to the general public.

Copies of this report should not be returned to the Aeronautical Systems
Division unless return is required by security considerations, contractual
obligations, or notice on a specific document.

400 - August 1962 - 4Z-1843 t 1844



,* 0

FOREWORD

This report was prepared by The University of Michigan under USAF Contract

No. AF 33(616)-6041. The contract was initiated under Project No. 7021, "Solid

State Research and Properties of Matter," Task No. 73653, "Mtechanisms of Flow
and Fracture of Metallic and Non-Metallic Crystalline Substances. The contract

is now under Project No. 7353, "Characterization of Solid Phase and Interphase
Phenomena in Crystalline Substances," Task No. 735301, "Mechanical Metallurgy."

The work was under the direction of the Directorate of Materials and Proc-
esses, Deputy Commander/Technology, Aeronautical Systems Division, with Dr. J.. ..

A. Herzog acting as project engineer.

This report covers work conducted from 2 January 1961 to 31 January 1962.
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ABSTRACT

Experimental observations of initial yielding, strain hardening, and frac- -

ture of Zamak-3 tubes for various states of combined stress are presented.

Testing temperatures of 32°F and 78°F were employed. These observations are
compared with predictions of Mises, Tresca, and maximum reduced stress theories

of initial yielding and with isotropic and kinematic theories of strain-harden-
ing. Fracture data are compared with the Griffith theory of rupture for brit-

* •tle materials.

It is concluded that Zamqk-3 behaves as an essentially isotropic material
in which yielding is independent of mean stress. Multiple loading path test -

results agree rather well with the predictions of kinematic hardening theory
in conjunction with the Tresca yield criterion. Fracture results conform to

a maximum normal stress theory which coincides with the Griffith theory for

the stress combinations investigated.

PUBLICATION REVIEW

This technical documentary report has been reviewed and is approved.

B. K. MORSE
Acting Chief,
Advanced Metal lurgical Studies Branch
Metals & Ceramics Laboratory
Directorate of Materials & Frocesses
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INTRODUCTION

The research reported here consisted of a theoretical and experimental in- 0

vestigation of the conditions for failure in cast zinc-alloy tubes at two test- .--:
ing temperatures.

This brings to an end one part of a general program, first, to examine the

relationship of state of stress and temperature to failure of metals and, sec- 0 O

ond, to develop failure criteria in terms of the macroscopic stresses, which

has been in progress at The University of Michigan since 1958 under Air Force
Contract No. AF 33(616)-6041. Previous work has been summarized in earlier re-

ports.1 2 Basically two types of material behavior are of concern in the gen-

eral program:

1. Yielding followed by appreciable plastic deformation and terminating

in ductile fracture.

2. Yielding followed by relatively little plastic deformation and term- ----
inating in brittle fracture. ,-.

The current research effort has related principally to three areas: (1) -.. -o

initial yielding, (2) changes in the conditions for continued plastic flow

during strain hardening, and (3) rupture. From the theoretical viewpoint, the
well-known theory of plasticity has been employed to define (or predict) an

initial yield function or an initial yield surface in principal stress space.

The motion of this yield surface during strain hardening has been examined in
light of recent strain-hardening theories of plasticity. As has been noted

in previous reports, the value of attempting to describe the material behavior

in terms of the existing theory of plasticity is that techniques ' solution

of boundary value problems already available could be used to extend the pre-
dictions of the theory to cases other than the simple one examined here. As

regards rupture, the brittle nature of the fracture suggested that a criterion

of the Griffith3 type might be appropriate.

The experimental prograr has been planned to check some of the basic points 0

which must be verified in order to use the available theory and to check pre-

dictions of the theory. It is not implied however that the yield conditions,

flow rule, or stress-strain laws postulated in the theory of plasticity are in-

tended to describe minutely the material behavior. The purpose of the experi-

mental comparisons is to determine whether correct general trends are predicted
by a theoretical model which is simple enough to be mathematically tractable in

the solution of boundary value problems.

Manuscript released by the authors February 1962 for publication as a WADD Tech-
nical Documentary Report.
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SPECIMEN AND MATERIAL

During the past year, attention has been centered on cast specimens of

Zamak-3 zinc alloy, a material exhibiting the second type of behavior dis-

cussed in the Introduction. As noted in a previous report,2 this material
does undergo a "ductile to brittle" transition in that the principal strain
at fracture changes from about 0.030 for the "ductile" state to about 0.007

or less for the "brittle" state. However the ultimate rupture appears to be

transgranular and is not accompanied by localized plastic deformation proc-
esses, such as necking, in the separated region. Thus gross changes in the

geometry of a tubular specimen do not occur. Two testing temperatures, 32"F
and 780F, were employed so that the range of states of stress for which brit-

tle fracture occurred could be compared.

Details of casting procedure and composition have been reported previ-
ously.2  It might be added here that no changes in the microstructure of a
sample of this material have occurred since observations were begun in July, -.

1960. -

The data reported herein were obtained by subjecting tubular specimens of

the type shown in Figure 1 to various combinations of axial force and torque

or axial force and internal pressure in a combined load testing machine. A

complete description of the colbined load testing machine is presented in WADD
TR 60-234. 1 The ratio of axial force to torque can be held constant in this
apparatus throughout a test run by a unique mechanico-hydraulic system. The

thin walled tubular specimen has been used by many investigators. This sort

of test specimen is advantageous since stresses are statically determinate to
a good approximation for axial loading, torque, and internal pressure. In a

material evaluation, it is of course essential that one be able to determine

the state of stress directly from the applied loads without reference to the

material properties.

In discussing the stresses in the tubular specimen it will be convenient
to refer to the sketch of the coordinate system shown in Figure 2. For a test

in which axial force and torque are applied, the stresses in the reduced sec- -

tion of the specimen are

P
aZ =

2 irrt

T

21r 2t

ar 09 TrG = rrz 0 (1)

2
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where:

r = mean radius of the reduced section

t = wall thickness
P = axial force

T = torque about z-axis.

Alternatively for a test combining axial force and internal pressure, the stresses

are

UZ P + a

27crt 2t

a9  pr -

Ur  r = T9Z = Trz 0. (2)

where p = internal pressure. In the above, stresses are computed in accordance .

with the usual assumptions for the membrane stresses in a thin-walled tube. For

the tubes used,

ar 1 ao9
r- -~--

at the inner surface of the tabe. This suggests that stress combinations where . .

az is much less than a9 be avoided since the assumption of ar = 0 relative to
the other stress would not be acceptable in that case. Consequently, the small-

est ratio used was az = 1/2 ao which occurs for internal pressure alone. .

In combined axial force and torque, ar is a principal stress since TrG =

Trz = 0 and the principal directions lying in the 9-z plane depend on the ratio
of az to T .. The combined load testing machine should hold this ratio fixed
in a given test and the principal directions should be fixed relative to an S

element of the material.

For combined axial force and internal pressure, the stresses ar, a , and
Gz are the principal stresses for all such load combinations since TrG = T9Z =

Trz =0 in all of them.

* -
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DISCUSSION OF THEORETICAL PREDICTIONS %-.o-%

The material model considered in this report is that of a rigid-strain
hardening material. Here, rigid, refers to the fact that the theory deals

only with the plastic portion of the total strain and thus all subsequent
statements concerning strains relate to plastic strains. Further the model
requires that states of stress which do not satisfy the yield condition or - -- <.

which lie inside the yield surface produce no (plastic) strain. When the

stress state point reaches the yield surface, the yield surface moves in some
prescribed manner corresponding to strain hardening and in addition (plas-

tic) strains are produced.

If the material is assumed to be isotropic initially, the reference di-
rections may be chosen at random and the principal directions of stress may
be selected for crivenience. Thus yield conditions may be stated in terms of .

the principal stresses and the yield surface may be considered in a space where
the coordinates are the principal stresses a1, a2, and 03. Now further as-
sume that yielding is independent of the average normal stress or mean stress

defined by

a = 1+ G2 + a'()

In this instance the yield stresses in tension and compression are the same.
Further, the yield condition can be expressed as a function of the invariants
of the stress deviator tensor, F(J2 ,J3 ) 

= k2 and the yield surface in prin-

cipal stress space is a cylinder with generators parallel to the octahedral

(a = a2 = US) axis. The latter point follows from the observation that a

hydrostatic state of stress does not produce yielding.

In view of the above, any octahedral plane (a+02+03 = constant) having . --

a normal extending in the direction of the octahedral axis, would cut the yield

surface at right angles. Further each intersection of octahedral plane and
yield surface would be identical so any octahedral plane may be used. Thus

in subsequent analysis the octahedral plane will be used to present results in

a simple but general way.

Finally if a stable plastic material is assumed then the yield surface..

must be convex in accord with the "fundamental postulate" due to Drucker.
4

For convex yield surfaces, it can be shown that the strain increment vector

must be normal to the yield surface which gives the flow rule of von Mises
5

deij = ? F (4)"
oGij

6
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* where deij is the plastic strain increment, F(aij) is the yield function, and

is the stress. The flow rule will give the result that

de + de2 +d = 0 (5) 

for any yield condition which is independent of mean stress. Since the strain-

increment vector is normal to the yield surface it would be expected to lie in - - "

an octahedral plane. ,

To demonstrate the use of the octahedral plane, several initial yield

criteria consistent with the preceding restrict-ons are shown plotted on the

octahedral plane in Figure 3. The circle corresponds to the von Mises condi-

tion for initial yielding,

(01 a2) + (02 G 3)2 + (a3 -i2 2o0 (6)

where ao is the yield stress in simple tension or compression. The radius of

this circle in the octahedral plane is 423 ao. Hexagon ABCDEFA corresponds

to the Tresca initial yielding condition

max dol - U21, Ic02 - 031, 103 - o1) = CO (7)

A new yield criterion called the maximum reduced stress criterion has been
proposed by Haythornthwaite6 and may be stated as follows

2
max 1or. - al, I2 - ol, IoG- o17 = 0o (8)

where a is the average normal stress or mean stress. This criterion states

that yielding occurs when the absolute value of the largest principal stress

deviator reaches a limiting value. It is represented by the external hexagon

GHIJKLG. The choice of pure tension as a point of agreement between the var-
ious theories was arbitrary.

Treating a3 as Or, the range of stress ccmbinations easily obtainable in

the combined load testing machine lie in the lesser angle LOH in Figure 3.

As noted already yielding begins when the stress state point reaches one

of these yield surfaces and plastic straining continues as long as the state

point tends to cause outward motion of the yield surface. Several theories

7
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of strain hardening will be used to predict motions of the yield surface during

this process.

ISOTROPIC HARDENING

Isotropic hardening, as presented by Hill,7 postulates that the yield sur-
face enlarges in a symmetrical manner with respect to the origin during plas-

tic straining or strain hardening. Thus the initial yield surface

F(aj) k2 (9)

becomes

F(aij) - c 2 - k2  (10)

after hardening. Obviously no Bauschinger effect is considered. To obtain a

stress increment-strain increment relationship note that when the stress state

point moves on the yield surface, dF = 0 = F/ aij (daij) and there is no

plastic strain in this instance suggesting for dF> 0 the form

d =ij GijdF. (11)

Now by use of the flow rule we obtain .

deij = -dak (12)
Oij 3cki

where, as usual, repeated subscripts denote summation, and Q is a scalar which
may depend on stress, strain, and their histories.

As an example, consider the Tresca yield criterion. Incidentally, the

Tresca criterion has the distinct advantage that the plastic strain increments
are partially independent of the stress path. For a stress state point in

contact with side AB, the stress-strain laws or flow laws for side AB where

F =G-a =go are

del = Q(dal - do3 )

-dC3 = Q(dol - d-3) '

O de2  0 0 (13)

9
6
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In the preceding, dal, dq2 , and da3 represent the incremental changes in the

principal stress components as the stress state point proceeds beyond the
initial yield surface. According to the isotropic hardening theory, side AB

moves in the direction of the outward normal a distance proportional to (dai-

da3) and the other sides will move the same distance along their outward

normals.

The corresponding flow laws for the Mises criterion are considerably more

complex but the geometric interpretation of the influence of a stress point

moving away from the origin is similar to the above. 0

Considering now an example involving the maximum reduced stress criterion,

the flow laws for a stress state point on side LG would be

dez = Q(2/9)(2doa - dq2 - d 3)

de2  = Q(-1/9) (2doi1 - do2 - da3 )

d;3 = Q(-1/9)(2dal- d 2 da3) (14)

As with the Tresca criterion, the plastic strain increments are partially in-

dependent of the stress path. Motion of the side LG during hardening would
be along the outward normal in an amount which is proportional to (2/3 al-

1/3 c2-1/3 a3) and by the isotropic hardening hypothesis the other sides move

outward like amounts.

Figure 4 presents geometrically a typical prediction of isotropic hard-

ening theory for the stress path 01. The solid circles and hexagons represent

the final positions of the various yield surfaces or loading surfaces presum- -

ing loading is stopped at point 1. If, as suggested earlier, a3 is treated
as Or, then a, = az and a2 = 09 and the path 01 would be produced by a com-
bination of axial tensile force and internal pressure. By considering various

stress paths on Figure 4, one can easily show that the final position of the
yield surface depends only on the final state of plastic strain and not on the

path. .@ -

KINEMATIC HARDENING

The kinematic theory of hardening originally proposed by Prager and de-

lineated by Shield and Ziegler,9 states that the initial yield surface

F(aij) = k2  (15)

10
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becomes, after hardening

F(aij - aij) k2  (16)

The flow rule is assumed to apply and the yield surface is assumed to trans-

late without changing the form of F(aid). The tensor cij represents the

translation of the yield surface which occurs in the direction of deij (i.e.,
the outward drawn normal to the yield surface). Thus

daij cdeij. (17)

This strain hardening theory gives predictions of material behavior which in-

clude the Bauschinger effect.

For this theory, the condition that the stress state point must remain on
the translating yield surface leads to the requirement that

(daij - dcaij) 3F - (18)
3Uij

Combining this with the equation for daij and the flow rule gives, during

- loading

1 1 F F
dc ij- c 6F -F - d- 1 -

i Crkf 0k (19)

This is similar to the stress increment-strain increment relation developed

earlier in isotropic brwdening, indicating a linear relationship between the

two.

Since aij is not necessarily an isotropic tensor (i.e., components in- S

variant with rotation) it is expected that an initially isotropic material
may become anisotropic with strain hardening. Consider the case in which the
principal axes of the stress tensor are fixed in an element of the material

during plastic straining. These principal axes can then be treated as the
reference axes. For an initially isotropic material aij 0 and the flow

rule gives the information that

d~ij = 0 (i~j) (20)

12

* S



since the principal axes of stress and strain increment tensors coincide. The

above equation woula not be correct if the reference axes were not the prin-

cipal axes of stress during the initial strain increment. It follows.that

dij= 0 (i % j) (21)

under these conditions and principal axes of stress remain principal axes during
hardening. 0

Referring to the previous section, it is noted that the principal axes of

stress in the tubular specimens are fixed in an element of the material for

all combinations of axial force and internal pressure. For axial force and

torque, the principal axes of stress are also fixed as long as the control

system maintains a constant ratio of axial force to tcrque.

For convenience, let us state the kinematic hardening theory in terms of

the principal stresses as follows:

S2 F(ai, a2, a3 ) k2  (22) - .

before hardening becomes

F[( ci - cei) (a2 - cE2 ) (a3 - cE3)] = k2  (23)

after hardening. The quantities cel, ce2, and ce3 represent the translation

of the yield surface as a rigid body in principal stress space, the transla-

tion occurring in the direction of the outward normal to the yield surface
at the stress state point.

For demonstrative purposes, again consider the example of a situation

where the Tresca theory applies and the stress state point remains on side AB - ,
as indicated in Figure 3. The stress-strain laws or flow laws have the same

form

del = 1/2c (dal - da3 )

-de3 = 1/2c (da3 - daO)

dE2  = 0. (24)

13
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During loading it can be shown that the center of the hexagon ABCDEFA in Fig-

ure 3 moves an amount 1/4 (daj-da3 ) in a direction perpendicular to AB.

When 03 = ar, ai Oz and o2 = 0g, this is what might occur for loading caused

by combined axial tension and internal pressure. Should the stress state

point enter a corner of the Tresca hexagon, the yield surface will move in the

direction of the stress increment vector.

When the maximum reduced stress criterion applies and side LG is con-

tacted by the stress state point, the flow laws are the same as those given

for the case under isotropic hardening except that Q = 3/2c. The entire hex- 0

agon GHIJKLG in Figure 3 moves as a unit an amount 1/4 (2/3 oa-1/3 oa2-1/3 a3)

along a line perpendicular to LG.

Figure 5 shows the motions of the various yield surfaces for kinematic
hardening under stress path 01. The solid circle represents the final posi-

tion for the Mises criterion, the solid hexagon A'B'C'D'E'F'A' represents the

final position for the Tresca criterion, and G'H'I'J'K'L'G' the final posi-

tion for the maximum reduced stress criterion. The vector 02 denotes the mo-

tion of the Tresca hexagon or 1/4 (do1 -da3 ). Similarly the vector 03 repre-

sents the motion of the Mises circle. Finally the vector 04 of magnitude

1/- (2/3o1-l/3o2-l/3as) gives the motion of the center of the hexagon rep- "

resenting the maximum reduced stress criterion. As above, a stress state

point entering a corner will cause a motion of the yield surface in the di-

rection of the stress increment vector. The forms for the various yield

criteria after kinematic hardening are:

Mises

-2 ]2 + ( 2 C3 ]2 -
* [I(01-0y3) -C(G 1-E3)) + (10)-c(Gi-E2)] + (20)-C(E2-Es)] 2 20g

Tresca

max 0lo1 - 02 c('.-Ga)I, I1 - o - c(.-Cs)I, I102- (0- c(-E 3)I) = CO

Maximum Reduced Stress

max (Io. - 0 - cP.l, I,0 - a- c 2 1, Ios - 0- CE1) = 2 0  (25) .

PIECEWISE LINEAR HARDENING

A third strain-hardening theory has been developed by Hodge
lO and is re-

ferred to here as piecewise linear hardening. Hodge's work is based solely

on the Tresca yield criterion and takes advantage of the limited stress path

independence of such a criterion. This theory differs from the isotropic or

kinematic hardening theories in that relative motions between the sides of the

yield surface during plastic straining are permitted, whereas the yield sur-

14°
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face moves as a rigid body in kinematic hardening and merely enlarges for iso-

tropic hardening. SandersI I suggested earlier the idea of using a yield sur-

face having a finite number of plane sides but the theory was not fully de-

veloped. In Hodge's theory, rotation of sides of the yield surface, forma- -

tion of sides, or disappearance of sides is not permitted. Although the sides .

may move independently, the only permissible motions are pure translations.

Principal axes of stress and strain must coincide and remain fixed 
in an el- -2

ement of the material throughout the plastic straining process.

The theory is developed by establishing flow las for all of the sides
of the yield surface, first for a stress state point in contact with a se-
lected side and then for a stress state point in a corner of the yield sur-

face. Again refer to Figure 3.

Suppose first that the stress state point remains on side AF, where F = -

a1-02 = O. The flow laws are 0

=~ 1/2c (d a, d da2)

-d 2  = 1/2c (do, - do 2 )

de3  - 0. (26)

* As for the Tresca criterion in kinematic hardening, the motion of side AF is

then 1/F2 (dca-do2) or 42 cdc. For convenience the symbol K will be sub-
stituted for \ c hereafter. The motion of side AF is now stated as

Kdc, = 1/1F (do, - da2). (27)

Now consider motion of the other sides while the stress state point remains on
AF. Side AB may move an amount proportional to the motion of AF so that its

movement along its normal is given by

a Kdc / (d - do3 ). (28)

The side EF would move an equal distance along its normal so that

KdE = /42 (do 3 - do 2 ). (29)

4 .. [160•



Side BC may move independently but still an amount proportional to that of AF
resulting in .

PKdrz 1/2 (do2  du3). (30)

Side DE moves a like amount to BC so that

PKdE = 1/1 (do 3 - dal). (31)

Now side CD may also be independent so its motion is

yKdE1  1 /12 (do 2 - da 1). (32)

To prevent disappearance of sides, HodgeI0 shows that

The above will coincide with the predictions of the kinematic theory if a =

1/2, P = -1/2, and y = -1 and will coincide with the isotropic theory if a =a* =7=1. -'

To indicate the significance of the quantities a, P, 7 the behavior of
the yield surface for a stress state point entering a corner must be known. -

This however requires consideration of the motions under another side regime.
If the stress state point lies on side AB, where 01-03 = ao, the flow law and
side motion for this side is

Kd, = 1/42 (do - da3) = -Kde 3 . (3-) -

Now for this case, adjacent side AF moves along its outward normal the dis-
tance

aKde- = 1/f (dal - do2). (35)

17
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Finally let the stress state point enter corner A as in Figure 6. In

this instance, sides AB and AF are both moved directly by the stress state

point. Note that for a stress state point on AF, del = -de2, while for a

stress state point on AB, del = -de3 . Then superpose the two simultanecus

motions using the expressions just given and obtain flow laws for AB

11l42 (das da1) =KdG 3 + aKdC2 (36)

and for AF

1142k (dar2 -dai) = Id1e2 aKdes. (37)

The boundary line between side regime, say AF, and corner regime, say A, is

defined by considering a stress state point on the boundary. If the state

point is considered as being on side AF, de3 = 0. Using this information in

the above flow laws, since the state point is also in the corner, we obtain

dal - da3  a(da1 - da2). (38)

Thus a is the ratio of adjacent side motions when the stress state point is
4

on the boundary. When a is known, a stress state point can be e,tablished as .

being on side AF if dcl-da 3 < a(dal-dc2) and as being in corner A if do1 -da3 >

a(dal-da2). If the stress state point is on side AF, corner A follows the
boundary defined by dra-das = a(dal-da2).

Figure 7 presents the motions of the sides of the yield surface for a

stress state point which remains on side AF and for a = 0.6, P = 0, and y -

-0.3. The indicated stress path 01 is a radial one although it is not neces-

sary to these motions of the yield surface that a radial path be maintained

as long as the state point is always on AF. It is apparent that a similar

theory could be developed using the maximum reduced stress criterion in place

0 of Tresca.

ANISOTROPY

Since one of the functions of the experimental program is to establish

the isotropy or lack of it of the Zamak-3 tubes, the nature of the anisotropy

that might appear will be considered.

Hill12 has suggested an analysis for a particularly simple type of ani-

sotropy and the following is adapted from his analysis.
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First assume that the principal axes of anisotropy in cast Zamak- 3 tubes
are the r-, 9- and z-axes (see Figure 2). Further assume that yielding in the
material remains insensitive to mean stress and that the general form of the

Mises yield criterion is applicable. A yield function in accord with these
assumptions is 0

F(a@-oz) 2 + G(z-r)2  + 2LT2  + 2MT2 + 2NT 1. (39)
r 9z rz r9 (9

The constants F, G, and H are related to the yield stresses a*, aq, o , in -

the r-, 9- and z-directions as follows:

1 G+H; H+F; 1 - F+G. (40)

Cr, 2a)

Similarly

1 1 1- . ..
2L = ; 2M = 2N = (41)

for the yield stresses in shear relative to the principal axes.

It would appear that a particular type of anisotropy which might occur

in cast material would be characterized by rotational symmetry of anistropy
about the r-axis. This means that the yield stresses in 9 and z-directions
would be equal. Since the Zamak-3 specimens were cast as solid cylindrical

" bars, it is possible that slight radial variations in grain structure might

occur as a result of the varying rate of cooling in the radial direction.
Such as situation could lead to the type of anisotropy described.

Now if one restricts the values of the constants in the above yield func-

tion so that isotropy is present for a rotation of the coordinate system about
the r-axis, the following relationships result:

H =G

2F+H = L

M = (42)

The yield function then becomes

21
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L

F(a 9 -az) 2 + H(az-ar) 2 + H(ar-@) 2 + 2(2F+H) Tz + 2MT2z + 2MT 1.--
r r~ (43) -

Applying the flow rule, the following plastic strain increments are obtained:

dGz = M[2F(az-a@) + 2H(az-ar)]

de = ?42F(ag-az) + 2H(ar-ar)]

der = [2H(2r-cr-az) ] -

d = • 4(2F+H) Tz-

dyrz = 4MTrz

dr = MTr (44)

From the above it is easy to show that

der + deg + dez = 0. (45)

For a pure tension test where az is the only non-zero stress, the ratio

of circumferential plastic strain increment to axial plastic strain increment

is

dG _ F (I46)
dEz F+H

In totally isotropic material, the yield function is F(J2, J3 ) = k2 if the
yield is independent of mean stress. J2 and J3 as before are the invariants

of the stress deviator tensor. The flow rule for this case gives . .

_ i = !(47)
dez 2

Thus a comparison of axial and circumferential plastic strains might detect

the presence of a radially symmetric anisotropy.
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It should be noted that a comparison of axial and circumferential strains .....

in a tension test is equivalent to the measurement of internal volume change

performed by Taylor and Quinney.13 This permanent internal volume change for
a tube is

AV =rfr 2 (de +2dEg). (48)

For zero volume change in the internal cavity it is necessary that

dez = -2dc@. (49)

It follows that the type of anisotropy described above would cause a permanent

change in volume of the internal cavity of a tube.

Pugh1 4 notes that measurement of internal volume change can not detect

the presence of anisotropy which is rotationally symmetric about the z-axis.

While such anisotropy could be present in, say, cold-drawn tubes, it is not

considered to be likely in cast tubes.

FRACTURE

Brittle fracture in materials of essentially zero ductility has been dis-

cussed by Griffith.3 His theory assumes that the material is elastic at the

instant of fracture or rapture which is brought on by the presence of small

elliptical cracks or holes. The theoretical work applies only to instances of

plane stress and thus would apply only to bodies having one dimension small

relative to the others. It is postulated that rupture occurs when the larg-

est stress tangent to the most favorably oriented ellipse reaches a limiting

value. This assumes that there are a sufficient number of pre-existing cracks

or ellipses so that some ellipse will always be in the most favorable orienta -7
tion. By relating this maximum stress to the applied plane principal stresses

the following is obtained: .

a. If 3 al + a2 > 0 then ca= r (50)

where ar is the rupture stress in say tension for a particular material,

b. If 35a + q2 < 0 then (C12)2 + 8 Gr(a1+U2) = 0. (51)

23



In the above a, is algebraically larger than q2 in all cases. %

The above criteria indicate that the test conditions prevalent in this

program, ranging from pure internal pressure to pure torsion, all fall within
category a. Category a is, in effect, a maximum normal stress criterion of 0
rupture.

.7
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RESULTS

During the past year, a considerable body of experimental data have been O
accumulated which can now be used to test the theoretical predictions just
discussed. In considering the experimental data at least two things should

be borne in mind.

1. Scatter in properties from specimen to specimen of Zamak-3 is known

to exist.

2. None of the theories discussed previously will furnish exact pre-

dictions of material behavior.

ISOTROPY

In the previous section, it is shown that an isotropic tube under tension
along the z-axis should exhibit a ratio of circumferential plastic strain to
axial plastic strain of -1/2. Total plastic strains can be considered rather A
than plastic strain increments because the stress path is a radial one.

Figure 8 presents a plot of axial plastic strain against circumferential
plastic strain for two tension tests. The test data marked OP-12 were ob-
tained at 78°F and the test data marked OP-14 were obtained at 32°F. Strains --

were measured with foil strain gages attached with Eastman 910 cement. For
OP-12 the ratio of circumferential plastic strain to axial plastic strain is

0.53 while for OP-14 the ratio is 0.54. This indicates a very slight, if any,
anisotropy.

A test of plastic volume change in the internal cavity of the specimen, .
somewhat similar to that of Taylor and Quinney, was also performed at a test-
ing temperature of 32°F. Figure 9 is a sketch of a specimen with rubber plugs
and plastic tubing in place. The volume change which was measured is that

lying between the two rubber plugs. This region and the tubing was filled
with water and permitted to stand overnight. During loading, the change in
water level was measured on a scale at roughly the same height as the spec-

imen itself. Of course this apparatus measures both elastic and plastic
volume change in the internal cavity. To evaluate the plastic volume change,
in Figure 10 a plot is made of the actual or measured volume change against
the computed elastic volume change. In a tension test the elastic volume
change in the internal cavity is given by

AV= r2(1-2v)- (52)

E
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where:

r = 0.344 in.
3 .3 in.

v = 0.25 0

E = 11.4 x 106 psi.

Figure 10 indicates that the measured volume change is almost entirely elastic

thus lending further support to the absence of anisotropy in Zamak-3 tubes.

INITIAL YIELDING

The yield stress is defined here as the proportional limit stress since

for all practical purposes the proportional limit stress is also the elastic --

limit stress. This point was checked during one test run by a program of .

loading and unloading, each subsequent loading stopping at a higher stress.

The plastic strains at zero stress showed the stress at unloading for which

plastic deformation began. In this case the propo.rtional limit stress ap-

peared to coincide with the elastic limit stress. -

For combined load tests, the measured az and a9 were plotted against the

largest measured strain. Stress values were noted at which the plot deviated

from linearity. The pair of stress values used were in all cases a pair of

values that had been observed at a given time. Of course, determination of

the exact proportional limit is a difficult task and might be expected to ap-

preciable scatter in results. Another alternative would be to use an offset

yield strength but a consistent measure of this would require plotting of some

type of effective stress-effective strain curve. The latter technique was

considered to be too indirect since in effect it requires an assumption to be

made for the yield criterion.

In all of the tests reported here, measurements of strain were made in

axial, circumferential, and 45° directions along with measurements of axial

force and internal pressure or torque. It was possible in nearly every case

to measure strains up to the point of fracture.

Figure 11 is a plot in the octahedral plane of initial data for 780F.

The x-y coordinate system shown can be used to locate points in the octahedral

plane. These x-y coordinates are related to the principal stresses a, and

02 (a 3 =r = ) as follows:

x = 1/1 (-at + 02)

y = -l/6 G1+ 2)- (53)
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The various numbers identify the data point with the test number. Those bear-
ing the letters PP or X are from runs in combined tension and internal pres- ' ' "

sure, those bearing the letters OP are from pure tension runs, those bearing
the letters TP are from combined tension and torsion tests, those marked PO

are from pure internal pressure runs, and those bearing the letters TO are 0
from pure torsion tests. Points Xl-Pl and X4-Pl are from a test run in which
internal pressure only was applied.

The circles shown would be a pair of yield surfaces containing all data

points assuming the Mises criterion applies. For the inner circle ao = 4950
psi, where aO is the tensile yield stress, and for the outer circle 0o = 7550

psi. The Tresca yield criterion plots as a hexagon on the octahedral plane
and the bounding hexagons for the data are shown in solid lines. For the
inner solid hexagon o = 5450 psi and for the outer solid hexagon ao = 8700

psi. Finally the dashed hexagons correspond to the maximum reduced stress
criterion and again bounding figures are shown. For the inner dashed hexagon

ao = 4450 psi and for the outer dashed hexagon co = 6970 psi. The degree of
scatter in the data obviate the selection of a particular yield criterion.
However, the yield surfaces having plane sides appear to fit the data as well
as the Mises criterion and will be used in the later analysis of strain hard-
ening. Further an isotropic yield criterion appears to be valid.

Figure 12 is a plot in the octahedral plane of initial yield data for
320F. All of the test symbols have been defined above. The circles in Fig-
ure 12 represent the bounding values of the Mises criterion, the inner circle
corresponding to 00 = 5030 psi and the outer circle to go = 7060 psi. The
solid hexagons repre. it the Tresca criterion. For the inner solid hexagon,
aO = 5230 psi and for ,he outer solid hexagon, ao = 8050 psi. The maximum
reduced stress criterion is represented by the dashed hexagons with the inner
dashed hexagon corresponding to ao = 4380 psi and the outer to o = 6920 psi.
Note that the yield values for the two testing temperatures are nearly the
same.

These yield surfaces are drawn, however, without considering points PP-
11 and PP-12. Both of these points lie well outside the yield surfaces that
bound the other points. This could be interpreted as the appearance of ani-

* sotropy but data discussed earlier indicate the material is isotropic. At S
present it is suggested that these stress combinations, which represent the
largest value of mean stress at the lower test temperature, do imply an ef-
fect of mean stress on the yielding process. However the nature of the ef-
fect is rather difficult to explain.

It is also to be noted that Figure 12 shows data for both tension and
compression (negative o1-axis) tests and that the yield in tension and com-
pression appear to be equal. This constitutes some evidence that there is
no effect of mean stress on yielding in this material.
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STRAIN HARDENING

A series of multiple loading path tests were performed to afford a check
of the various strain hardening theories. The general procedure in these tests
was to load first along a given path (radial in all cases) to a point well be- .
yond the initial yield surface, then to completely unload the specimen and to

reload again along a second radial loading path to fracture. All of the data
were obtained using combinations of tension and internal pressure so that
rotation of the principal axis of stress would not occur during the loading

program.

In all of the analysis presented, the Tresca yield criterion and the ..

maximum reduced stress criterion of yielding are used because of their rel-
ative simplicity in connection with the kinematic hardening hypothesis.

Figure 13 gives the results for test Xl which was performed at 78"F. .
Initial loading in this case was internal pressure alone. The point desig-
nated Xl-Pl represents initial yielding while Xl-P1 max denotes the largest
stress combination reached for the first path. Hexagon ABCDEFA represents
the initial Tresca yield surface and hexagon GHIJKLG represents the initial

maximum reduced stress yield surface. These are outlined in dashed lines.
Note that Xl-P1 max lies on a subsequent yield surface denoted by the solid
hexagons A'BIC'DIEIFIAI and GIH'I'J'K'L'G'. The second loading was a com-
bination of tension and internal pressure and point X1-P2 is the yield point
during this second loading.

It is apparent that yielding on secondary loading did occur at approx-
imately the point predicted by the kinematic hardening theory. Isotropic

hardening would predict a yield stress-combination that is much too large in

comparison with the observed yield data on second loading.

Figures 14, 15, and 16 present other multiple loading path results for
780F. Figures 17, 18, 19, and 20 are similar results obtained at 320F. Desig-
nation of points on these figures in analogous to that described above. In

Figure 15, the data for yielding on second load indicate that the translated
maximum reduced stress criterion predicts a yield .tress-combination which is

much too small. The other test data indicate that the kinematic hardening
theory in conjunction with either Tresca or maximum reduced stress yield
criteria give good predictions for the stress combination to produce yielding
on second loading. This is true even for fairly large translations of the

yield surface.

Actually the data presented here are insufficient to firmly establish

that the yield surface translates as a rigid body. Thus it is possible that
deformation of the yield surface might occur or that the correct strain hard-

ening theory is the piecewise linear one proposed by Hodge. Additional test
data would be required to resolve this point.
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FRACTURE

Observed stresses at fracture for combined tension and internal pres-

sure are plotted in Figure 21. Circles represent data at 78°F and crosses
represent data at 320F.

These data are presented on a graph of ag versus cz, the principal

stresses, since there is no reason to expect that fracture is independent "

of mean stress and the octahedral plane is useless. All data points roughly

follow the maximum normal stress criterion of rupture, with a stress at

rupture of about 27,000 psi being appropriate. All of these data points
represent "brittle" behavior, the principal strain at fracture falling in

the range 0.004 to 0.007. The only "ductile" behavior at either test temp-

erature was in pure torsion. Here the principal strains reached 0.020 be-
fore the test was terminated because of insufficient twisting capacity.
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CONCLUSIONS

The experimental data presented in the previous section appear to justify

the following conclusions:

1. The Zamak-3 tubes are isotropic or at most exhibit anisotropy

which is rotationally symmetric about the axis of a specimen.

The latter seems unlikely.

2. Although there is scatter in the test results, it appears that

initial yield criteria which assume isotropy and independence

of mean stress are applicable. Certain unexplained anomalies

appear at high mean stresses however. -

3. The initial yield stress is in the same range for tests at
32°F and 78F.

k, Strain-hardening behavior can be predicted by a kinematic or
piecewise linear theory in conjunction with the Tresca yield

criterion.

5. Fracture under brittle conditions is satisfactorily prediced
by a maximum normal stress theory of fracture.

It should be noted that further analysis of these data will be presented

in a special report constituting the Ph.D. thesis of one of the investigators

(D. R. Jenkins). This special report will be available in early summer.

40

S
iL =0 .°

0"

<: • - .0

0o



z

REFERENCES

1. Clark, S. K., Gascoigne, H. E., Jenkins, D. E., and Wolf, L. W., Effect of

State of Stress on thae Failure of Metals at Various Temperatures, WADD TR
60-234, The University of Michigan, March, 1960 Contract No. AF 33(616)-
6o41.

2. Clark, S. K., Haythornthwaite, R. M., and Jenkins, D. R., Effect of State
of Stress on the Failure of Metals at Various Temperatures, WADD TR 60--
869, The University of Michigan, January, 1961 Contract No. AF 33(616)-
6041.

3 5. Griffith, A. A., "The Theory of Rupture," Proceedings of the First Inter-
national Congress for Applied Mechanics (Delft), 1924, pp. 55-63.

4. Drucker, D. C., "A More Fundamental Approach to Plastic Stress-Strain
Relations , Proceedings of the First U. S. National Congress of Applied - -

Mechanics, 1951, ASME (1952), pp, 487-491.

5. von Mises, R., "Mechanik der plastischen Formanderung von Kristallen,"
Keitschrift fur Angew Math und Mech, vol. 8, 1928, pp. 161-185.

6. Haythornthwaite, R. M., "Range of Yield Condition in Ideal Plasticity," -
Journal of the Engineering Mechanics Division, Proceedings of the Ameri-
can Society of Civil Engineers, vol. 87, No. EM6, December, 1961 ",:-'.-,

* 7. Hill, R., The Mathematical Theory of Plasticity, Oxford University Press,
41950, pp. 23-49.

8. Prager, W., "The Theory of Plasticity: A Survey of Recent Achievements,"
Proceedings of the Institution of Mechanical Engineers, vol. 169, 1955,
pp. 41-57.

9. Shield, R. T., and Zeigler, H., "On Prager's Hardening Rule," Zeitschrift
fur Angewandte Mathematik und Physik, vol. 9a, 1958, pp. 260-276. -

10. Hodge, P. G., Jr., "A General Theory of Piecewise Linear Plasticity Based
on Maximum Shear," Journal of the Mechanics and Physics of Solids, vol. 5,
1957, pp. 242-260.

11. Sanders, J. L., Jr., "Plastic Stress-Strain Relations Based on Linear 0
Loading Functions," Proceedings of the Second U. S. National Congress of
Applied Mechanics, 1954, ASME (1955), pp. 455-460.

12. Hill, R., loc. cit., p. 318.

13. Taylor, G. I., and Quinney, H., "Plastic Distortion of Metals," Philo-
sophical Transactions of the Royal Society, London, A, vol. 230, 1931,

P. 323.

14. Pugh, H.L.D., "A Note on a Test of the Plastic Isotropy of Metals,"
Journal of Mechanics and Physics of Solids, vol. 1, 1953, pp. 284-286.

45

I



-or

*r ; 4- 14

co O I w ;4- ;I 
-to CsO 0.0 00

5
H-C

4 ~-4~MP W OI 00 0 P~~.4 Cho 004 0

0 3 4 
a) *: *. H 0- .- -H

H0 -P. -0 401-

4. W .I,0 5

0 o' 1- a4 " 0 0 +

HOP' -. /1.5 * 0 0 .-4a.~ d .0$4 a4..w
H> 04 C; 40 400 C30 ~ e

40 92 0 0 0 0VA . 0
1-1 0 M to '0 0 4 4.00O

Is ca O0 03 0.0 04- 3 ~ d

W9. 10 g4-0
a0'200 0 0 0 0 39
1 .4 IMO

0~ CO0. 4;, 00 0 r 4

* I _, 0 C
<D 0~~~~~ O . O Z - aO

A .4 -a -L4 0(.30 0 4 4t
>0..~ 05440 a D o m 0 03

43 11 05 0 .00 . m0440m 4)0
8,* * 410 4 0 g4. 0 0 0~ 4.8 E-0 0 4

0 E0 0 00 -0 Q 3+)4.)0.'tl")1. Q G
E- cl . k I m 0 .A CO .0-H 4- 0

OZ - 'A 0)
4 0 0) D04 .0 )A- 4
0.4 4) 4 o" 4. +

EF) ~~~0 (z c 5 . 31 ,.,C 4s o
4 ~ 0 r-4 A3 4~- IoC 01

Ca4 (a S34 -0(44 4 0 ;1C 41 ) 0
t .Jjc H4 H , H I 3p (a004)i

6 0 E-100C 4 Q4 40 00*.0 0
4- M 0 , .~.4

1 0040-. k ~ '4 0 0 4' 4 00 0 4co \ \0 00 . 0 0 3 0

05 (0 . 30 $4 . ;j .0 ;'4 :001 43HOP. 4 O4d 0s3 0 0 . 5 54)4.4 .. g W.04
$0 H0 00 4 00 . 004 4 0 93 $4

43 1011,
00

0 - 0 .0 oo H 0" 0
m E0 0..4 4- 9 £5 43

48 0 ,D.4 0 0 .

0) f740 E3o4304

40 4CO >00 043a
P. 54 CO.-0 '0 4.04

0~ . . 0 0 I - 0 .

1 1 0 10 0 54430:

40 C] m~ F4 .0 0 0 . Vr4 ' a)5454.00 ----- 4 --- - -0l 41 1 A
0I



Ar -- A4

W.i
co c ocOD .0 . *

100

1,1.4 J-6 00 8,

1-4~~~~A -o- 0Z* v

0 ID NAACl''E4' , 4. 0
I-I *4 I, Col 4. 0A0 c

0H '.0 114 4"- a S
A. 0204 410~

04 0 ~ 2r0~ . M 40 -. 1 Id -1 40 S31 g4

1. 0. 0+) 0 0 4 00 ,I I. 0 , A

a., 9 44 ~~~4.IAA 4- (0.mt 02AA

0 r. t .. . .

4 0 l* 40, 0 4. 0 V0 l
co- A4 0 0 02.0. 00 - 0-.4

1444c 0 400 oc$0 0 0

E402 r 0 0203 0002

0 1 0 0 1 4 > 02 A .0 A W P
4m2. 02 2 . 00

C(20 :, 10 A I 0 - ~ - 0

a ~ ~~ AI 0 
0$4 0 -

A140 E4-I - 0 1.N4 ~ O.4 . 0
C) 0o 31t4 0$44 X , 1 '040 o 0 4
qk. vI E4r- ) c E 4 $4 0 P 43 0-11 0 20

*0 0 co022 (1 $4 c 0 218+1 a0$ 0 40
1 $4 102- C) 'a $4 0 :3.0 w 4 0410 14

b-I *4- 4-4 4 44 0.003 02.04
$. $3o~' 4ZQoo 00P4 0 P .0 93C$4:

A m

I- 'n 02 L~

A,~~0 I - :tA

H4 0

4 AA ;4J0' 4 H H A

0 ! ~ ( A g $ 0 34 1. 1 . 1 4 % .l

41 ~ Q 094 0 2
A ~~~~ ~ ; 000 / I,~ 4 v 0

to M0 $4 00 Et 4.0 4 93' ,4 o0 d

0 0 -0 P 0I~~ .1 H 4v0.. 4 2-I o:

CI H O 14 -P
F 02 -4o$4 0. .* .0

14 to4 0* 0 0 09 .' 0 . , $4 -44 $4.14.1 $4

01 4 1 1 -- P -O04 11 .4 0 ~ 2 0 > 4
2002 010 000 4 .0 E .

44 C 4c rI 00 4 *.0$ .4 4- C 00 01

.20 0 o .0 0.0 .10

0020 00
*14L24 E-4- o-Mo ~

'4 ~ ~ ~ ~ 1 N 44 0 ) $3 A24P.. on02. . 40 2 4 0 P

I 0. $4GOD$ V $4 'o 0 o 40 .4 402
H * 0 'T .- O + 41 2.000 2.44 AD

I -I T ,141. "2'o 0M00 0 0 .0 1.~ A A
4- o -. Io' a 02o0A1 A ~'0 0~ O 4.4

V4 A A -A . A H -A A n A4- A kA '*A

A F 5 A A- AD 0* A

A4 41A C.A A 0
x A A A 0 k AA 10


